DATA SHEET V3 TYPE

KEY FEATURES

- Array lengths up to 4 m
- 2.5 mm, 1.6 mm, 0.8 mm or 0.4 mm detector pitch
- Range of scintillator types
- Simultaneous data acquisition and read-out
- 8 steps of gain
- Operation by external trigger

DESCRIPTION

- Dual energy option with gain settable independently for high and low energy and for each board in the system
- Continuous or externally triggered scan
- USB2.0, GIGE or 16 bit output via high speed parallel link to the CPU

LINX is a linear X-ray sensor, built up of Sens-Tech XDAS DH (Detector Head) and SP (Signal Processing) boards to provide an array of any length. The gain for each DH board can be set separately. Detector pitch is: 2.5 mm, 1.6 mm, 0.8 mm or 0.4 mm. The LINX unit is housed in an aluminium alloy box of modular construction with a stainless steel lid. Lead screening protects the electronics from radiation damage. The unit has a collimator with a carbon fibre window, so that only a narrow X-ray beam can reach the detector, reducing scattered radiation and improving image quality.

X-rays are detected using a scintillator and photodiode array. Gadox, CsI (TI), CdWO4 and GOS are offered to cover the energy range 30 keV to 1.4 MeV. Bare silicon can be used down to 5keV. Dual energy systems can also be supplied. In this mode, gain for low and high energy channels can be set separately.

The detector is linked to a processor via USB2, PCI-7300A data I/O card, frame-grabber, ethernet or camera link. Data is output in 16-bit format.

www.sens-tech.com info@sens-tech.com LINX data sheet Page 1 of 15

DESCRIPTION CONTINUED...

DATA SHEET V3 TYPE

Data acquisition time for a single line can be selected in the range 50 μ s to 50 ms subject to the number of detector boards and the maximum read-out rate from the system of 48MB/s.

APPLICATIONS

- Security inspection
- CT Imaging
- Multi-view imaging
- Non-destructive testing
- Thickness measurement

Food inspection

- Foreign particle detection
- Bone densitometry

- Industrial process control
- Mineral sorting
- Waste sorting

GENERAL SPECIFICATION

INTEGRATION 10 µs to 50 ms	ГІМЕ	SUB SAMPLES 1, 2 OR 4		
SNR 0.4 MM (<iopf capacitance)<="" detector="" th="">1.875pC6,000:115pC17,000:160pC34,000:1</iopf>		SNR 0.8 MM (<iuf capacitance)<="" detector="" th=""> 1.875pC 10,000:1 15pC 18,000:1 60pC 34,000:1</iuf>		
SNR 1.6 MM (<3 1.875pC 15pC 60pC	OPF DETECTOR CAPACITANCE) 8,000:1 17,500:1 33,000:1	SNR 2.5 MM (<7 1.875pC 15pC 60pC	75PF DETECTOR CAPACITANCE) 4,500:1 14,000:1 27,500:1	
NON-LINEARITY <0.1% over 10 pC	4 2	MAXIMUM READ-OUT RATE 48MB/s		
A/D CONVERSI 16 BIT	ON & OUTPUT	GAIN ADJUSTMENT 8 steps, 1.875 pC to 15 pC		

GENERAL SPECIFICATION CONTINUED...

DATA INTERFACES	DETECTOR PITCH
USB2, PCI7300A, camera link, giga Ethernet, framegrabber	0.4 mm, 0.8 mm, 1.6 mm, 2.5mm
DETECTOR ACTIVE LENGTH	SCINTILLATOR TYPES
50 mm to 4 m	Gadox, GOS, Csl, CdWO4 and Silicon.

POWER SUPPLY 12V (9V to 30V), 100mV/p-p rip-ple. Please consult Sens-Tech for individual system input current requirements and power supply recommendation.

ENVIRONMENTAL SPECIFICATION

OPERATING CASE TEMPERATURE	STORAGE TEMPERATURE
+5 to +60°C	-40 to +70°C
HUMIDITY (NON-CONDENSING) OPERATING	HUMIDITY (NON-CONDENSING) NON-OPERATING
30°C 93%	40°C 93%

PRINCIPLES OF OPERATION

All XDAS DH board have 128 channels. Board width is: 51.2 for 0.4mm pitch; 102.4 mm for 0.8mm & 1.6 mm pitch and 160mm for 2.5mm pitch. 1.6mm and 2.5mm pitch boards can either be single energy with only 64 channels used or dual energy with 64 high energy channels and 64 low energy channels stacked one above the other. For 0.4mm and 0.8 mm pitch boards, these are single energy only. Separate boards need to be used for low and high energy.

Current from the photodiodes is integrated by a custom designed microcircuit containing 128 charge sensitive amplifiers and a multiplexer. User gain settings enable the charge capacity to be set between 1.875 pC and 15 pC. This can be increased by a factor of 4 using the on-board facility for sub-sampling and summation.

PRINCIPLES OF OPERATION CONTINUED...

User settings to control integration times, gain and number of sub-samples together with information on system configuration are transmitted over the selected interface and stored in non-volatile RAM so that at switch-on, the system is initiated in the last mode saved.

DATA ACQUISITION RATE

There are two limiting factors to the scan time, the ADC rate and the data bus rate. ADC conversion rate can be set to 1.5 MS/s or 3.0 MS/s. Normally this will be the determining factor. Using the 3.0 MS/s ADC setting, a single Signal Pro-cessing board can convert signals from 128 channels to digi-tal format in 42.7 μ s so that for a 10 board system, the con-version time would be 427 μ s. For faster scan rates, more Signal Processing boards can be used until the data bus rate becomes the limiting factor.

The maximum data bus rate is 48 MB/s. A single board trans-mits 258 bytes per scan so that a 10 board system with a scan time of 1 ms would have a data rate of 2.58 MB/s. The maximum rate is 48 MB/s, limiting the scan time to approxi-mately 65 µs for a 10 board system.

Signal integration time in a typical line scan application is as calculated using following formula: Integration time (ms) = pixel width (mm)/belt speed (m/s)

Example: integration time setting for 1.6mm pixel width scanning at 1m/s belt speed shall be 1.6 / 1 = 1.6 ms

Speed of operation is normally limited by processing speed of an SP board. Two speeds are available. The SP board takes 42.7 µs at 3MSps and 85.4 µs at 1.5MSps to process a DH board. Minimum continuous integration time of a system can be calculated using following formulae:

3MSps: Tint (minimum) = 1.6μs + (num DH per SP x 42.7μs)

1.5MSps: Tint (minimum) = 3.2μs + (num DH per SP x 85.4μs)

Example: minimum integration time for a 9 DH board and 1 SP board system shall be 1.6 + 9x42.7 = 386 µs

www.sens-tech.com info@sens-tech.com

DATA ACQUISITION RATE CONTINUED...

Multiple SP boards process DH boards in parallel.

Example: minimum integration time for a 18 DH board and 2 SP board system shall be 1.6 + 18 x 42.7 = 386 μs

Shorter integration time setting will switch electronics to a non-continuous mode.

The SP board increases dead time to allow for ADC conversion to complete before starting the next integration cycle. A total of 258 bytes is read out per DH board. This includes 2 bytes per pixel and 2 header bytes representing SP address and DH address. There are five host bus speed settings available: 3, 6, 12, 24 and 48 MB/s. The host data rate setting must exceed the data being produced by the system. When integration time is longer than Tint (minimum), average host data rate can be calculated using following formula:

Data rate (MB/s) = (258 x numSP X numDH per SP) / Tint (us)

Example: data rate for a system of 2 SP boards and 9 DH boards at 500us integration time shall be (258 x2x9) / 500 = 9.3MB/s. Therefore, host bus speed should be set to 12MHz.

HOST DATA INTERFACE

Four types are available, providing the following interfaces:

1

Parallel RS485 output using up to 50 metre SCSI cable connecting to:

- USB2.0 remote converter, adaptor XDAS-USB2
- GIGE remote convertor, adaptor XDU-INT-SGI
- PCI7300A card, via an RS485 to TTL convertor, adaptor XDAS-485A-TTL

2

Local USB2.0 output connecting to:

- Laptop, PC or a single board computer
- High speed USB2.0 extender using fibre-optic or CAT5 cable

www.sens-tech.com info@sens-tech.com LINX data sheet Page 5 of 15

HOST DATA INTERFACE CONTINUED...

3

Local GIGE output connecting to laptop, PC or a single board computer:

- UDP protocol
- 1000 BASE-T Gigabit data rate
- Fibre convertor.

4

Channel Link / Camera Link:

- 2.2 Gb/s data rate
- Interface to Active Silicon AS-PHX-D48CL-PE4 frame grabber

EVALUATION SYSTEM AND SOFTWARE

A software package is supplied (by link) to demonstrate the capability of the unit. This includes integration time and sub-sample setting, gain correction and offset correction. The software includes a data logging facility.

In addition a XAPI is supplied to assist the customer in the development of the required application.

An evaluation system is available, consisting of a detector head board, signal processing board, RS485/USB/GIGE output and evaluation software. This is mounted in a test box (LINX type, see data sheet) to provide electrical and radiation screening. Demonstration software is available via download link or on a CD and can be loaded on to a Windows PC (Pentium 4 or later) to check basic function of the system. A high speed USB 2.0 or Gigabit Ethernet port is required for the host interface. The soft-ware enables setting of gain and integration time and single lines of data to be acquired.

Data can be logged to a csv file and can be displayed in graphical form. Gain and offset correction can be applied via the software.

Imaging application is available, contact Sens-Tech for details.

ORDERING INFORMATION

LINX-XYZZ-VERSION NO (ASSIGNED BY SENS-TECH).				
PITCH				
X = 1	1.6 mm pitch			
X = 2	0.8 mm pitch			
X = 8	2.5 mm pitch			
X = 6	0.4 mm pitch			
SCINTILLATOR				
Y = 1	Gadox up to 120 kV			
Y = 2	Csl(Tl) up to 180 kV			
Y = 3 CdWO4 up to 320 kV				
Y = 4 Gadox / Csl (DE)				
Y = 5 Silicon				
Y = 6 Gadox / CdWO4 (DE)				
Y = 7 Silicon / Gadox (DE)				
Y = 8 ZnSe / Gadox				
Y = 9 Misc (GOS up to 200kV is available)				
greater thickness can achieve higher levels				
ACTIVE LENGTH (0.4, 0.8 & 1.6 PITCH) (2.5 PITCH)			
ZZ = 01	102.4 mm	160 mm		
ZZ = 02	204.8 mm	320 mm		
ZZ = 03	307.2 mm	480 mm		

409.6 mm

2048 mm

intermediate sizes can also be specified

dual energy (DE) systems can also be supplied.

www.sens-tech.com info@sens-tech.com

ZZ = 04

ZZ = 20

LINX data sheet Page 7 of 15

640 mm

32000 mm

ORDERING INFORMATION CONTINUED...

LINX-XYZZ-VERSION NO (ASSIGNED BY SENS-TECH).					
POWER SUPPLY					
XDAS-PSU12	12V / 5A				
POWER CABLES					
LINXPOWERabcde-xx	Examples:				
a: 0 = 7W2D connector	LINXPOWER01112-XX	7W2 IP50 to flying lead			
b:1 = IP50 rated	LINXPOWER01212-XX	7W2 IP50 to 4 way DIN			
2 = IP67 rated	LINXPOWER02112-XX	7W2 IP67 to flying lead			
c: 1 = flying lead	LINXPOWER02212-XX	7W2 IP67 to 4 way DIN			
2 = 4 way DIN (PSU12 type)					
d: 1 = 10mR per metre					
e: 2 = screened					
xx = length in metres					
DATA CABLES	ADAPTOR UNITS				
CABLE5OWSCSI-2/xxM	XDAS-USB2 (see block o	diagram)			
CABLE-USB2-AB-xxM	XDAS-485A-TTL(see block diagram)				
CABLE-CAT6-xxM XDAS-DFG-TTL (frame grabber)					
xx = length is metres	XDU-INT-SGI (SCSI to GIGE)				

INTERNAL BLOCK DIAGRAM

www.sens-tech.com info@sens-tech.com LINX data sheet Page 9 of 15

DATA SHEET V3 TYPE

SYSTEM BLOCK DIAGRAM

www.sens-tech.com info@sens-tech.com LINX data sheet Page 10 of 15

DATA SHEET V3 TYPE

SYSTEM CONNECTIONS

SYSTEM CONFIGURATION

The above diagram shows the arrangement of XDAS boards within the LINX unit. There can be up to 24 Detector Head Boards for each Signal Processing board. These are arranged in 2 detector arms with a maximum of 12 boards per arm. This diagram shows a system built for either local USB2, GIGE or RS485 operation. A system for RS485 can be fitted with a different external interface unit e.g. channel link (camera link).

www.sens-tech.com info@sens-tech.com LINX data sheet Page 11 of 15

DETECTORS

0.4 mm PITCH					
TYPE OF SCINTILLATOR	THICKNESS	ENERGY RANGE	SIGNAL OUTPUT PER UNIT OF ENERGY	DECAY TIME CONSTANT	COMMENTS
Silicon	0.30 mm	5 - 30 keV	highest	1 µs for unbiased diode	direct conversion, no scintillator cost
Gadox (Tb)	0.3 mm	20 - 100 keV	similar to CSI	2 - 3 ms	phosphor strip, no pixellation required to prevent cross-talk
0.8 mm PITCH	ł				
TYPE OF SCINTILLATOR	THICKNESS	ENERGY RANGE	SIGNAL OUTPUT PER UNIT OF ENERGY	DECAY TIME CONSTANT	COMMENTS
Silicon	0.30 mm	5 - 30 keV	highest	1 µs for unbiased diode	direct conversion, no scintillator cost
Gadox (Tb)	0.2 mm 0.3 mm 0.4 mm	20 - 120 keV	20% lower similar to CSI 20% lower	<1 ms 2 - 3 ms <1 ms	phosphor strip
CSL	2.5 mm	40 - 160 keV	best light output	2 components, slow decay of secondary component (seconds)	pixelated arrays to reduce crosstalk
CDW04	2.5 mm	80 - 320 keV	25% of CSI	20 µs	pixelated arrays, highest cost material

www.sens-tech.com info@sens-tech.com LINX data sheet Page 12 of 15

DETECTORS

1.6 mm PITCH					
TYPE OF SCINTILLATOR	THICKNESS	ENERGY RANGE	SIGNAL OUTPUT PER UNIT OF ENERGY	DECAY TIME CONSTANT	COMMENTS
Silicon	0.15 mm	5 - 30 keV	highest	1 µs for unbiased diode	direct conversion, no scintillator cost
Gadox (Tb)	0.2 mm 0.3 mm 0.4 mm	20 - 120 keV	20% lower similar to CSI 20% lower	<1 ms 2 - 3 ms <1 ms	phosphor strip
CSL	0.4 mm 3 mm 4 mm	40 - 180 keV	best light output	2 components, slow decay of secondary component (seconds)	pixelated arrays to reduce crosstalk
CDW04	2.5 mm	80 - 320 keV	25% of CSI	20 µs	pixelated arrays, highest cost material
GOS	2.9 mm	80 - 225 keV	50% more than CdW04 at 160keV	3 µs	pixelated arrays, resistant to radiation damage

DETECTORS

2.5 mm PITCH					
TYPE OF SCINTILLATOR	THICKNESS	ENERGY RANGE	SIGNAL OUTPUT PER UNIT OF ENERGY	DECAY TIME CONSTANT	COMMENTS
Silicon	0.15 mm	5 - 30 keV	highest	1 µs for unbiased diode	direct conversion, no scintillator cost
Gadox (Tb)	0.2 mm 0.3 mm 0.4 mm	20 - 120 keV	20% lower similar to CSI 20% lower	<1 ms 2 – 3 ms <1 ms	phosphor strip
CSL	4 mm 10 mm	40 - 180 keV 40 - 320 keV	best light output	2 components, slow decay of secondary component (seconds)	pixelated arrays to reduce crosstalk
CDW04	2.5 mm 30 mm	80 - 320 keV 80 - 1.4MeV	25% of CSI	20 µs	pixelated arrays, highest cost material
GOS	2.9 mm	80 - 200 keV	50% more than CdW04 at 160keV	3 µs	pixelated arrays, resistant to radiation damage

www.sens-tech.com info@sens-tech.com LINX data sheet Page 14 of 15

DATA SHEET V3 TYPE

OUTLINE DRAWINGS MM

For reference only, please contact Sens-Tech for individual system drawing.

LED STATUS MNEMONICS

	LED INDICATION	MEANING (USB)	MEANING (GIGE)
	Green	Idle	Idle
\bigcirc	Green (Flashing)	Acquiring data	Acquiring data
	Amber	Data buffer overflow. (Idle)	Connected to 100Mbps link. Not yet supported
\cup	Amber (Flashing)	Data buffer overflow. (Acquiring)	Command received from host
	Red/Green (Alternating)	System under reset	System under reset
	Red [1]	Microcontroller not responding	Device fault. Contact support
	Red [1] (Flashing ~1Hz)	USB endpoint has stalled	Ethernet Link is not connected
	Red [1] (Flashing >4Hz)	Could not enumerate as USB2.0 device	Ethernet link fault
	Off	Power off, un-programmed or other fault	Power off, un-programmed or other fault

[1] This feature is only available in firmware version 3.0.9 and above.

SENS - TECH

www.sens-tech.com info@sens-tech.com

The company reserves the right to modify these designs and specifications without notice. Developmental devices are intended for evaluation and no obligation is assumed for future manufacture. While every effort is made to ensure accuracy of published information the company cannot be held responsible for errors or consequences arising therefrom.

LINX data sheet Page 15 of 15

An ISO 9001 registered company